Non-existence of Global Solutions for a Differential Equation Involving Hilfer Fractional Derivative
نویسندگان
چکیده
We consider a basic fractional differential inequality with a fractional derivative named after Hilfer and a polynomial source. A non-existence of global solutions result is proved in an appropriate space and the critical exponent is shown to be optimal.
منابع مشابه
Existence results for hybrid fractional differential equations with Hilfer fractional derivative
This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence of mild solution for evolution equation with Hilfer fractional derivative
The paper is concerned with existence of mild solution of evolution equation with Hilfer fractional derivative which generalized the famous Riemann–Liouville fractional derivative. By noncompact measure method, we obtain some sufficient conditions to ensure the existence of mild solution. Our results are new and more general to known results. Nowadays, fractional calculus receives increasing at...
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کامل